女人被男人强扒内裤内衣,一区中文字幕在线观看,天天干夜夜做,亚洲成人av网址,亚洲性一区,国产精品亚洲综合,亚洲情一区,日韩一区二区在线免费

您當前的位置:檢測資訊 > 科研開發

電磁屏蔽基本原理

嘉峪檢測網        2021-01-18 09:30

在電子設備及電子產品中,電磁干擾(Electromagnetic Interference)能量通過傳導性耦合和輻射性耦合來進行傳輸。為滿足電磁兼容性要求,對傳導性耦合需采用濾波技術,即采用EMI濾波器件加以抑制;對輻射性耦合則需采用屏蔽技術加以抑制。在當前電磁頻譜日趨密集、單位體積內電磁功率密度急劇增加、高低電平器件或設備大量混合使用等因素而導致設備及系統電磁環境日益惡化的情況下,其重要性就顯得更為突出。

圖片

 

屏蔽是通過由金屬制成的殼、盒、板等屏蔽體,將電磁波局限于某一區域內的一種方法。由于輻射源分為近區的電場源、磁場源和遠區的平面波,因此屏蔽體的屏蔽性能依據輻射源的不同,在材料選擇、結構形狀和對孔縫泄漏控制等方面都有所不同。在設計中要達到所需的屏蔽性能,則需首先確定輻射源,明確頻率范圍,再根據各個頻段的典型泄漏結構,確定控制要素,進而選擇恰當的屏蔽材料,設計屏蔽殼體。

 

屏蔽原理

 

電屏蔽的實質是減小兩個設備(或兩個電路、組件、元件)間電場感應的影響。電屏蔽的原理是在保證良好接地的條件下,將干擾源所產生的干擾終止于由良導體制成的屏蔽體。因此,接地良好及選擇良導體做為屏蔽體是電屏蔽能否起作用的兩個關鍵因素。 

 

磁屏蔽的原理是由屏蔽體對干擾磁場提供低磁阻的磁通路,從而對干擾磁場進行分流,因而選擇鋼、鐵、坡莫合金等高磁導率的材料和設計盒、殼等封閉殼體成為磁屏蔽的兩個關鍵因素。 

 

電磁屏蔽的原理是由金屬屏蔽體通過對電磁波的反射和吸收來屏蔽輻射干擾源的遠區場,即同時屏蔽場源所產生的電場和磁場分量。由于隨著頻率的增高,波長變得與屏蔽體上孔縫的尺寸相當,從而導致屏蔽體的孔縫泄漏成為電磁屏蔽最關鍵的控制要素。

 

屏蔽效能

 

屏蔽體對輻射干擾的抑制能力用屏蔽效能SE(Shielding Effectiveness)來衡量,屏蔽效能的定義:沒有屏蔽體時,從輻射干擾源傳輸到空間某一點(P)的場強 1( 1)和加入屏蔽體后,輻射干擾源傳輸到空間同一點(P)的場強 2( 2)之比,用dB(分貝)表示。 

電磁屏蔽基本原理

電磁屏蔽基本原理

電磁場通過金屬材料隔離時,電磁場的強度將明顯降低,這種現象就是金屬材料的屏蔽作用。我們可以用同一位置無屏蔽體時電磁場的強度與加屏蔽體之后電磁場的強度之比來表征金屬材料的屏蔽作用,定義屏蔽效能(ShieldingEffectiveness,簡稱SE):

電磁屏蔽基本原理

,電場的屏蔽效能

電磁屏蔽基本原理

,磁場的屏蔽效能

 

 

式中:E1, H1為無屏蔽體時的電場強度和磁場強度,

 

E2, H2為有屏蔽體時的電場強度和磁場強度。

 

屏蔽的分類

 

工程中,實際的輻射干擾源大致分為兩類:類似于對稱振子天線的非閉合載流導線輻射源和類似于變壓器繞組的閉合載流導線輻射源。由于電偶極子和磁偶極子是上述兩類源的最基本形式,實際的輻射源在空間某點產生的場,均可由若干個基本源的場疊加而成(圖2)。因此通過對電偶極子和磁偶極子所產生的場進行分析,就可得出實際輻射源的遠近場及波阻抗和遠、近場的場特性,從而為屏蔽分類提供良好的理論依據。

 

電磁屏蔽基本原理

 

遠近場的劃分是根據兩類基本源的場隨1/r(場點至源點的距離)的變化而確定的, 為遠近場的分界點,兩類源在遠近場的場特征及傳播特性均有所不同。

電磁屏蔽基本原理

電磁屏蔽基本原理

 

近場和遠場

 

干擾通過空間傳輸實質上是干擾源的電磁能量以場的形式向四周空間傳播。場可分為近場和遠場。近場又稱感應場,遠場又稱輻射場。判定近場遠場的準則是以離場源的距離r也定的。

 

我們常用波阻抗來描述電場和磁場的關系,波阻抗定義為

 

Zo=E/H

 

在遠場區電場和磁場方向垂直并且都和傳播方向垂直稱為平面波,電場和磁場的比值為固定值,為Zo=120π=377歐。下圖為波阻抗與距離的關系。

電磁屏蔽基本原理

能量密度包括電場分量能量密度和磁場分量能量密度,通過對由同一場源所產生的電場、磁場分量的能量密度進行比較,可以確定場源在不同區域內何種分量占主要成份,以便確定具體的屏蔽分類。能量密度的表達式由下列公式給出: 

電磁屏蔽基本原理

電磁屏蔽基本原理

屏蔽體上孔縫的影響

 

實際上,屏蔽體上面不可避免地存在各種縫隙、開孔以及進出電纜等各種缺陷,這些缺陷將對屏蔽體的屏蔽效能有急劇的劣化作用。

 

上節中分析的理想屏蔽體在30MHz以上的屏蔽效能已經足夠高,遠遠超過工程實際的需要。真正決定實際屏蔽體的屏蔽效能的因素是各種電氣不連續缺陷,包括:縫隙、開孔、電纜穿透等。

 

屏蔽體上面的縫隙十分常見,特別是目前機柜、插箱均是采用拼裝方式,其縫隙十分多,如果處理不妥,縫隙將急劇劣化屏蔽體的屏蔽效能。

 

根據孔耦合理論,決定孔縫泄漏量的因素主要有兩個:孔縫面積和孔縫最大線度尺寸。兩者皆大,則泄漏最為嚴重;面積小而最大線度尺寸大則電磁泄漏仍然較大。

 

孔縫主要分為四類: 

 

●     機箱(機柜)接縫 

 

    該類縫雖然面積不大,但其最大線度尺寸即縫長卻非常大,由于維修、開啟等限制,致使該類縫成為電子設備中屏蔽難度最大的一類孔縫,采用導電襯墊等特殊屏蔽材料可以有效地抑制電磁泄漏。

 

該類孔縫屏蔽設計的關鍵在于:合理地選擇導電襯墊材料并進行適當的變形控制。  

 

●     通風孔

 

    該類孔面積和最大線度尺寸較大,通風孔設計的關鍵在于通風部件的選擇與裝配結構的設計。在滿足通風性能的條件下,應盡可能選用屏效較高的屏蔽通風部件。

 

●     觀察孔與顯示孔 

 

    該類型孔面積和最大線度尺寸較大,其設計的關鍵在于屏蔽透光材料的選擇與裝配結構的設計。 

 

●     連接器與機箱接縫 

 

這類縫的面積與最大線度尺寸均不大,但由于在高頻時導致連接器與機箱的接觸阻抗急劇增大,從而使得屏蔽電纜的共模傳導發射變大,往往導致整個設備的輻射發射出現超標,為此應采用導電橡膠等連接器導電襯墊。

 

綜上所述,孔縫抑制的設計要點歸納為: 

 

● 合理選擇屏蔽材料; 

 

● 合理設計安裝互連結構。

 

選擇屏蔽材料

 

  屏蔽體的有效性用屏蔽效能來度量。屏蔽效能是沒有屏蔽時空間某個位置的場強E1與有屏蔽時該位置的場強E2的比值,它表征了屏蔽體對電磁波的衰減程度。用于電磁兼容目的的屏蔽體通常能將電磁波的強度衰減到原來的百分之一至百萬分之一,因此通常用分貝來表述屏蔽效能,這時屏蔽效能的定義公式為:

SE = 20 lg (E1/ E2 ) (dB)

  用這個定義式只能測試屏蔽材料的屏蔽效能,而無法確定應該使用什么材料做屏蔽體。要確定使用什么材料制造屏蔽體,需要知道材料的屏蔽效能與材料的什么特性參數有關。工程中實用的表征材料屏蔽效能的公式為:

SE = A + R (dB)

  式中的A稱為屏蔽材料的吸收損耗,是電磁波在屏蔽材料中傳播時發生的,計算公式為:

A=3.34t(fμrσr)    (dB)

t = 材料的厚度,μr = 材料的磁導率,σr = 材料的電導率,對于特定的材料,這些都是已知的。f = 被屏蔽電磁波的頻率。

  式中的R稱為屏蔽材料的反射損耗,是當電磁波入射到不同媒質的分界面時發生的,計算公式為:

R=20lg(ZW/ZS) (dB)

  式中,Zw=電磁波的波阻抗,Zs=屏蔽材料的特性阻抗。

  電磁波的波阻抗定義為電場分量與磁場分量的比值:Zw = E / H。在距離輻射源較近(<λ/2π,稱為近場區)時,波阻抗的值取決于輻射源的性質、觀測點到源的距離、介質特性等。若輻射源為大電流、低電壓(輻射源電路的阻抗較低),則產生的電磁波的波阻抗小于377,稱為低阻抗波,或磁場波。若輻射源為高電壓,小電流(輻射源電路的阻抗較高),則波阻抗大于377,稱為高阻抗波或電場波。關于近場區內波阻抗的具體計算公式本文不予論述,以免沖淡主題,感興趣的讀者可以參考有關電磁場方面的參考書。當距離輻射源較遠(>λ/2π,稱為遠場區)時,波波阻抗僅與電場波傳播介質有關,其數值等于介質的特性阻抗,空氣為377Ω。

  屏蔽材料的阻抗計算方法為:

 ?。黌S|=3.68×10-7(fμr/σr) (Ω)

f=入射電磁波的頻率(Hz),μr=相對磁導率,σr=相對電導率

  從上面幾個公式,就可以計算出各種屏蔽材料的屏蔽效能了,為了方便設計,下面給出一些定性的結論。

● 在近場區設計屏蔽時,要分別考慮電場波和磁場波的情況;

● 屏蔽電場波時,使用導電性好的材料,屏蔽磁場波時,使用導磁性好的材料;

● 同一種屏蔽材料,對于不同的電磁波,屏蔽效能是不同的,對電場波的屏蔽效能最高,對磁場波的屏蔽效能最低,也就是說,電場波最容易屏蔽,磁場波最難屏蔽;

● 一般情況下,材料的導電性和導磁性越好,屏蔽效能越高;

● 屏蔽電場波時,屏蔽體盡量靠近輻射源,屏蔽磁場源時,屏蔽體盡量遠離磁場源;

  有一種情況需要特別注意,這就是1kHz以下的磁場波。這種磁場波一般由大電流輻射源產生,例如,傳輸大電流的電力線,大功率的變壓器等。對于這種頻率很低的磁場,只能采用高導磁率的材料進行屏蔽,常用的材料是含鎳80%左右的坡莫合金。

 

孔洞和縫隙的電磁泄漏與對策

  一般除了低頻磁場外,大部分金屬材料可以提供100dB以上的屏蔽效能。但在實際中,常見的情況是金屬做成的屏蔽體,并沒有這么高的屏蔽效能,甚至幾乎沒有屏蔽效能。這是因為許多設計人員沒有了解電磁屏蔽的關鍵。

  首先,需要了解的是電磁屏蔽與屏蔽體接地與否并沒有關系。這與靜電場的屏蔽不同,在靜電中,只要將屏蔽體接地,就能夠有效地屏蔽靜電場。而電磁屏蔽卻與屏蔽體接地與否無關,這是必須明確的。

  電磁屏蔽的關鍵點有兩個,一個是保證屏蔽體的導電連續性,即整個屏蔽體必須是一個完整的、連續的導電體。另一點是不能有穿過機箱的導體。對于一個實際的機箱,這兩點實現起來都非常困難。

  首先,一個實用的機箱上會有很多孔洞和孔縫:通風口、顯示口、安裝各種調節桿的開口、不同部分結合的縫隙等。屏蔽設計的主要內容就是如何妥善處理這些孔縫,同時不會影響機箱的其他性能(美觀、可維性、可靠性)。

  其次,機箱上總是會有電纜穿出(入),至少會有一條電源電纜。這些電纜會極大地危害屏蔽體,使屏蔽體的屏蔽效能降低數十分貝。妥善處理這些電纜是屏蔽設計中的重要內容之一(穿過屏蔽體的導體的危害有時比孔縫的危害更大)。

  當電磁波入射到一個孔洞時,其作用相當于一個偶極天線(圖1),當孔洞的長度達到λ/2時,其輻射效率最高(與孔洞的寬度無關),也就是說,它可以將激勵孔洞的全部能量輻射出去。

  對于一個厚度為0材料上的孔洞,在遠場區中,最壞情況下(造成最大泄漏的極化方向)的屏蔽效能(實際情況下屏蔽效能可能會更大一些)計算公式為:

SE=100 -20lgL - 20lg f + 20lg [1 + 2.3lg(L/H)] (dB)

  若 L ≥λ/2,SE = 0  (dB)

  式中各量:L = 縫隙的長度(mm),H = 縫隙的寬度(mm),f = 入射電磁波的頻率(MHz)。

  在近場區,孔洞的泄漏還與輻射源的特性有關。當輻射源是電場源時,孔洞的泄漏比遠場時?。ㄆ帘涡芨撸斴椛湓词谴艌鲈磿r,孔洞的泄漏比遠場時要大(屏蔽效能低)。近場區,孔洞的電磁屏蔽計算公式為:

  若ZC >(7.9/D·f):

SE = 48 +20lg ZC - 20lgL·f+ 20lg [1 + 2.3lg (L/H) ]

  若Zc<(7.9/D·f):

SE = 20lg [(D/L) + 20lg (1 + 2.3lg (L/H) ]

  式中:Zc=輻射源電路的阻抗(Ω),

D = 孔洞到輻射源的距離(m),

L、H = 孔洞長、寬(mm),

f = 電磁波的頻率(MHz)

  說明:

● 在第二個公式中,屏蔽效能與電磁波的頻率沒有關系。

● 大多數情況下,電路滿足第一個公式的條件,這時的屏蔽效能大于第二中條件下的屏蔽效能。

● 第二個條件中,假設輻射源是純磁場源,因此可以認為是一種在最壞條件下,對屏蔽效能的保守計算。

● 對于磁場源,屏蔽效能與孔洞到輻射源的距離有關,距離越近,則泄漏越大。這點在設計時一定要注意,磁場輻射源一定要盡量遠離孔洞。

  多個孔洞的情況

  當N個尺寸相同的孔洞排列在一起,并且相距很近(距離小于λ/2)時,造成的屏蔽效能下降為20lgN1/2。在不同面上的孔洞不會增加泄漏,因為其輻射方向不同,這個特點可以在設計中用來避免某一個面的輻射過強。

  除了使孔洞的尺寸遠小于電磁波的波長,用輻射源盡量遠離孔洞等方法減小孔洞泄漏以外,增加孔洞的深度也可以減小孔洞的泄漏,這就是截止波導的原理。

  一般情況下,屏蔽機箱上不同部分的結合處不可能完全接觸,只能在某些點接觸上,這構成了一個孔洞陣列??p隙是造成屏蔽機箱屏蔽效能降級的主要原因之一。減小縫隙泄漏的方法有:

● 增加導電接觸點、減小縫隙的寬度,例如使用機械加工的手段(如用銑床加工接觸表面)來增加接觸面的平整度,增加緊固件(螺釘、鉚釘)的密度;

● 加大兩塊金屬板之間的重疊面積;

● 使用電磁密封襯墊,電磁密封襯墊是一種彈性的導電材料。如果在縫隙處安裝上連續的電磁密封襯墊,那么,對于電磁波而言,就如同在液體容器的蓋子上使用了橡膠密封襯墊后不會發生液體泄漏一樣,不會發生電磁波的泄漏。

 

穿過屏蔽體的導體的處理

  造成屏蔽體失效的另一個主要原因是穿過屏蔽體的導體。在實際中,很多結構上很嚴密的屏蔽機箱(機柜)就是由于有導體直接穿過屏蔽箱而導致電磁兼容試驗失敗,這是缺乏電磁兼容經驗的設計師感到困惑的典型問題之一。

  判斷這種問題的方法是將設備上在試驗中沒有必要連接的電纜拔下,如果電磁兼容問題消失,說明電纜是導致問題的因素。解決這個問題有兩個方法:

● 對于傳輸頻率較低的信號的電纜,在電纜的端口處使用低通濾波器,濾除電纜上不必要的高頻頻率成分,減小電纜產生的電磁輻射(因為高頻電流最容易輻射)。這同樣也能防止電纜上感應到的環境噪聲傳進設備內的電路。

● 對于傳輸頻率較高的信號的電纜,低通濾波器可能會導致信號失真,這時只能采用屏蔽的方法。但要注意屏蔽電纜的屏蔽層要360°搭接,這往往是很難的。

在電纜端口安裝低通濾波器有兩個方法

● 安裝在線路板上,這種方法的優點是經濟,缺點是高頻濾波效果欠佳。顯然,這個缺點對于這種用途的濾波器是十分致命的,因為,我們使用濾波器的目的就是濾除容易導致輻射的高頻信號,或者空間的高頻電磁波在電纜上感應的電流。

● 安裝在面板上,這種濾波器直接安裝在屏蔽機箱的金屬面板上,如饋通濾波器、濾波陣列板、濾波連接器等。由于直接安裝在金屬面板上,濾波器的輸入、輸出之間完全隔離,接地良好,導線上的干擾在機箱端口上被濾除,因此濾波效果十分理想。缺點是安裝需要一定的結構配合,這必須在設計初期進行考慮。

  由于現代電子設備的工作頻率越來越高,對付的電磁干擾頻率也越來越高,因此在面板上安裝干擾濾波器成為一種趨勢。一種使用十分方便、性能十分優越的器件就是濾波連接器。濾波連接器的外形與普通連接器的外形完全相同,可以直接替換。它的每根插針或孔上有一個低通濾波器。低通濾波器可以是簡單的單電容電路,也可以是較復雜的電路。

  解決電纜上干擾的一個十分簡單的方法是在電纜上套一個鐵氧體磁環,這個方法雖然往往有效,但是有一些條件。許多人對鐵氧體寄予了過高期望,只要一遇到電纜輻射的問題,就在電纜上套鐵氧體,往往會失望。鐵氧體磁環的效果預測公式為:

  共模輻射改善 =20lg(加磁環后的共模環路阻抗/加磁環前的共模環路阻抗)

  例如,如果沒加鐵氧體時的共模環路阻抗為100Ω,加了鐵氧體以后為1000Ω,則共模輻射改善為20dB。

  說明:有時套上鐵氧體后,電磁輻射并沒有明顯的改善,這并不一定是鐵氧體沒有起作用,而可能是除了這根電纜以外,還有其他輻射源。

  在電纜上使用鐵氧體磁環時,要注意下列一些問題:

● 磁環的內徑盡量小

● 磁環的壁盡量厚

● 磁環盡量長

● 磁環盡量安裝在電纜的端頭處

 

金屬屏蔽效率

    可用屏蔽效率(SE)對屏蔽罩的適用性進行評估,其單位是分貝,計算公式為 SEdB=A+R+B

其中 A:吸收損耗(dB) R:反射損耗(dB) B:校正因子(dB)(適用于薄屏蔽罩內存在多個反射的情況)一個簡單的屏蔽罩會使所產生的電磁場強度降至最初的十分之一,即SE等于20dB;而有些場合可能會要求將場強降至為最初的十萬分之一,即SE要等于100dB。

吸收損耗是指電磁波穿過屏蔽罩時能量損耗的數量,吸收損耗計算式為

AdB=1.314(f×σ×μ)1/2×t

其中 f:頻率(MHz) μ:銅的導磁率 σ:銅的導電率 t:屏蔽罩厚度

    反射損耗(近場)的大小取決于電磁波產生源的性質以及與波源的距離。對于桿狀或直線形發射天線而言,離波源越近波阻越高,然后隨著與波源距離的增加而下降,但平面波阻則無變化(恒為377)。

  相反,如果波源是一個小型線圈,則此時將以磁場為主,離波源越近波阻越低。波阻隨著與波源距離的增加而增加,但當距離超過波長的六分之一時,波阻不再變化,恒定在377處。

    反射損耗隨波阻與屏蔽阻抗的比率變化,因此它不僅取決于波的類型,而且取決于屏蔽罩與波源之間的距離。這種情況適用于小型帶屏蔽的設備。

近場反射損耗可按下式計算

R(電)dB=321.8-(20×lgr)-(30×lg f)-[10×lg(μ/σ)] R(磁)dB=14.6+(20×lg r)+(10×lg f)+[10×lg(μ/σ)]

其中 r:波源與屏蔽之間的距離。

SE算式最后一項是校正因子B,其計算公式為B=20lg[-exp(-2t/σ)]

    此式僅適用于近磁場環境并且吸收損耗小于10dB的情況。由于屏蔽物吸收效率不高,其內部的再反射會使穿過屏蔽層另一面的能量增加,所以校正因子是個負數,表示屏蔽效率的下降情況。

電磁屏蔽基本原理
分享到:

來源:Internet

主站蜘蛛池模板: 国产vsv精品一区二区62| 中文字幕一级二级三级| 日本午夜影视| 99国产精品久久久久| 国产69久久| 亚洲午夜国产一区99re久久| 欧美精品六区| 国产伦高清一区二区三区| 国产精品一区二| 中文无码热在线视频| 国产精品视频久久久久久久| 国产91电影在线观看| 欧美一区二区三区四区在线观看| 午夜av资源| 亚洲欧美日本一区二区三区| 国偷自产中文字幕亚洲手机在线 | 国产精品久久久综合久尹人久久9| 精品久久9999| 国产91视频一区| 欧美一级日韩一级| 91看片app| 国产欧美一区二区三区四区| 国产91电影在线观看| 欧美老肥婆性猛交视频| 国产精品一区二区在线看| 国久久久久久| 最新国产精品久久精品| 夜夜爱av| 亚洲第一天堂无码专区 | 国产午夜精品一区二区三区最新电影| 日本护士hd高潮护士| 中文文精品字幕一区二区| 亚洲1区2区3区4区| 国产一区亚洲一区| 国产精品乱码久久久久久久久| 欧美日韩一区二区三区精品| 国产清纯白嫩初高生在线播放性色| 国产一区欧美一区| 欧美日韩精品在线一区| ass美女的沟沟pics| 99国产精品9| 91精品第一页| 亚洲国产精品一区二区久久,亚洲午夜| 综合色婷婷一区二区亚洲欧美国产| 国产欧美一区二区三区在线| 亚洲欧美国产一区二区三区 | 国产69精品久久99的直播节目| 午夜av片| 99久久精品免费视频| 日韩中文字幕亚洲精品欧美| 国产精品亚洲一区| 日韩一区二区福利视频| 欧美日韩国产精品一区二区| 欧美精品久| **毛片在线免费观看| 亚洲精品中文字幕乱码三区91| 国产精品一区二区日韩新区| 欧美一区二区三区免费观看视频 | 黄色香港三级三级三级| 国产免费第一区| 亚洲精品一区中文字幕| 亚洲一级中文字幕| 97国产精品久久久| 午夜影院黄色片| 亚洲精品色婷婷| 99国产精品| 国产一级大片| 国产精品久久久爽爽爽麻豆色哟哟| 精品在线观看一区二区| 国产精品伦一区二区三区视频| 久久国产精品99国产精| 91久久免费| 国产精品区一区二区三| 久久久久国产亚洲日本| 国产一级不卡视频| 日韩精品一区二区三区免费观看视频| 国产精华一区二区精华| 日韩国产欧美中文字幕| 国产69精品久久久久app下载| 国产精品不卡在线| 国产一区在线视频观看| 亚洲福利视频一区二区|